Research Article

# On the Complex Zeros of Some Families of Orthogonal Polynomials 

Eugenia N. Petropoulou<br>Division of Applied Mathematics and Mechanics, Department of Engineering Sciences, University of Patras, 26500 Patras, Greece<br>Correspondence should be addressed to Eugenia N. Petropoulou, jenpetro@des.upatras.gr

Received 8 March 2010; Accepted 6 May 2010
Academic Editor: Roman Šimon Hilscher
Copyright © 2010 Eugenia N. Petropoulou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The complex zeros of the orthogonal Laguerre polynomials $L_{n}^{(a)}(x)$ for $a<-n$, ultraspherical polynomials $P_{n}^{(\lambda)}(x)$ for $\lambda<-n$, Jacobi polynomials $P_{n}^{(a, \beta)}(x)$ for $a<-n, \beta<-n, a+\beta<-2(n+1)$, orthonormal Al-Salam-Carlitz II polynomials $P_{n}^{(a)}(x ; q)$ for $a<0,0<q<1$, and $q$-Laguerre polynomials $L_{n}^{(a)}(x ; q)$ for $a<-n, 0<q<1$ are studied. Several inequalities regarding the real and imaginary properties of these zeros are given, which help locating their position. Moreover, a few limit relations regarding the asymptotic behavior of these zeros are proved. The method used is a functional analytic one. The obtained results complement and improve previously known results.

## 1. Introduction

Orthogonal polynomials appear naturally in various problems of physics and mathematics and are considered as one of the basic tools in confronting problems of mathematical physics. Also, orthogonal polynomials have many important applications in problems of numerical analysis, such as interpolation or optimization. For a survey on applications and computational aspects of orthogonal polynomials, see [1] and the references therein.

Some of the most important properties of orthogonal polynomials, $P_{n}(x)$, are the following.
(P1) The orthogonal polynomials $P_{n}(x)$ are orthogonal with respect to a weight function $\varrho(x)>0$ on an interval of orthogonality $[a, b] \subseteq \mathbb{R}$ and all their zeros are real and simple and lie inside $(a, b)$.
(P2) Some classes of orthogonal polynomials $P_{n}(x)$ (including some of the classes studied in the present paper) satisfy an ordinary differential equation of the form

$$
\begin{equation*}
\sigma(x) P_{n}^{\prime \prime}(x)+\tau(x) P_{n}^{\prime}(x)+\lambda_{n} P_{n}(x)=0, \tag{1.1}
\end{equation*}
$$

