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A discrete equivalent and not analogue of the well-known logistic differential equation is
proposed. This discrete equivalent logistic equation is of the Volterra convolution type, is obtained
by use of a functional-analytic method, and is explicitly solved using the z-transform method.
The connection of the solution of the discrete equivalent logistic equation with the solution of the
logistic differential equation is discussed. Also, some differences of the discrete equivalent logistic
equation and the well-known discrete analogue of the logistic equation are mentioned. It is hoped
that this discrete equivalent of the logistic equation could be a better choice for the modelling
of various problems, where different versions of known discrete logistic equations are used until
nowadays.

1. Introduction

The well-known logistic differential equation was originally proposed by the Belgian
mathematician Pierre-François Verhulst (1804–1849) in 1838, in order to describe the growth
of a population P(t) under the assumptions that the rate of growth of the population was
proportional to

(A1) the existing population and

(A2) the amount of available resources.

When this problem is “translated” into mathematics, results to the differential
equation

dP(t)
dt

= rP(t)
[

1 − P(t)
K

]
, P(0) = P0, (1.1)


