

Journal of Computational and Applied Mathematics 153 (2003) 387-393

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

www.elsevier.com/locate/cam

On the common zeros of Bessel functions

Eugenia N. Petropoulou^{*,1}, Panayiotis D. Siafarikas, Ioannis D. Stabolas¹

Department of Mathematics, University of Patras, Patras, Greece

Received 15 October 2001; received in revised form 13 March 2002

Abstract

Using a functional analytic method we give some results concerning common zeros of the ordinary Bessel functions $J_{\nu}(z)$ of first kind, with respect to ν and fixed z. A lower bound for the common zero z of the Bessel functions $J_{\nu}(z)$, $J_{\mu}(z)$, where ν , μ are known, is also given. (c) 2002 Elsevier Science B.V. All rights reserved.

MSC: 33C10

Keywords: Common zeros; Bessel functions

1. Introduction

Investigating the common zeros of Bessel functions of first kind, $J_{\nu}(z)$, is a quite old and important problem of Bessel functions for which various theoretical and numerical results exist. One such result is that the Bessel functions $J_{\nu}(z)$ and $J_{\mu}(z)$, where μ rational and $\nu - \mu$ is a positive integer, cannot have common zeros (Bourget's hypothesis) [14, p. 484]. A simple alternative proof of a specific case of this result was given in [9, p. 464]. However, this result does not exclude the possibility that two functions $J_{\nu}(z)$ and $J_{\mu}(z)$, where ν, μ do not differ by a positive integer, may have common zeros.

The problem of locating the zeros can be "attacked" in two ways. One way is to consider a fixed z_0 and investigate the function $J_v(z_0)$ as a function of v. The first who did this was Dougall in 1900 [4] who proved that, if z_0 is purely imaginary, then the real part of v cannot be nonnegative. Later, in 1936, Coulomb [3] improved this result by proving that for z_0 purely imaginary and v not real, the real part of v cannot be greater than $-\frac{3}{2}$. In the same paper he proved that there exists a

^{*} Corresponding author.

E-mail address: jenny@math.upatras.gr (E.N. Petropoulou).

¹ Supported by the State Scholarship's Foundation.