On the common zeros of Bessel functions

Eugenia N. Petropoulou*, ${ }^{* 1}$, Panayiotis D. Siafarikas, Ioannis D. Stabolas ${ }^{1}$
Department of Mathematics, University of Patras, Patras, Greece

Received 15 October 2001; received in revised form 13 March 2002

Abstract

Using a functional analytic method we give some results concerning common zeros of the ordinary Bessel functions $J_{v}(z)$ of first kind, with respect to v and fixed z. A lower bound for the common zero z of the Bessel functions $J_{v}(z), J_{\mu}(z)$, where v, μ are known, is also given. (c) 2002 Elsevier Science B.V. All rights reserved.

MSC: 33C10
Keywords: Common zeros; Bessel functions

1. Introduction

Investigating the common zeros of Bessel functions of first kind, $J_{v}(z)$, is a quite old and important problem of Bessel functions for which various theoretical and numerical results exist. One such result is that the Bessel functions $J_{v}(z)$ and $J_{\mu}(z)$, where μ rational and $v-\mu$ is a positive integer, cannot have common zeros (Bourget's hypothesis) [14, p. 484]. A simple alternative proof of a specific case of this result was given in [9, p. 464]. However, this result does not exclude the possibility that two functions $J_{v}(z)$ and $J_{\mu}(z)$, where v, μ do not differ by a positive integer, may have common zeros.

The problem of locating the zeros can be "attacked" in two ways. One way is to consider a fixed z_{0} and investigate the function $J_{v}\left(z_{0}\right)$ as a function of v. The first who did this was Dougall in 1900 [4] who proved that, if z_{0} is purely imaginary, then the real part of v cannot be nonnegative. Later, in 1936, Coulomb [3] improved this result by proving that for z_{0} purely imaginary and v not real, the real part of v cannot be greater than $-\frac{3}{2}$. In the same paper he proved that there exists a

[^0]
[^0]: * Corresponding author.

 E-mail address: jenny@math.upatras.gr (E.N. Petropoulou).
 ${ }^{1}$ Supported by the State Scholarship's Foundation.

