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ON THE LOGISTIC EQUATION IN THE COMPLEX PLANE
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� The famous logistic differential equation is studied in the complex plane. The method used
is based on a functional analytic technique which provides a unique solution of the ordinary
differential equation (ODE) under consideration in H2(�) or H1(�) and gives rise to an
equivalent difference equation for which a unique solution is established in �2 or �1. For the
derivation of the solution of the logistic differential equation this discrete equivalent equation is
used. The obtained solution is analytic in �z ∈ � : |z| < T �, T > 0. Numerical experiments
were also performed using the classical 4th order Runge–Kutta method. The obtained results
were compared for real solutions as well as for solutions of the form y(t) = u(t) + iv(t), t ∈ �.
For t ∈ � the solution derived by the present method, seems to have singularities, that is, points
where it ceases to be analytic, in certain sectors of the complex plane. These sectors, depending
on the values of the involved parameters, can move at different directions, join forming
common sectors, or pass through each other and continue moving independently. Moreover,
the real and imaginary part of the solution seem to exhibit oscillatory behavior near these
sectors.
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1. INTRODUCTION

The logistic differential equation

y′(t) = �y(t) − �[y(t)]2, y(0) = a, (1.1)
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